MCAS-Alt Update: What’s New for 2020?

Fall 2019

- Dan Wiener, Administrator of Inclusive Assessment
- MCAS-Alt Teacher Consultants:
 Patty Sprano, Sheila Chamberlin, Laura Hines, and Dianne Costello
Schedule for the Day

Teachers **without recent MCAS-Alt experience** should attend:
- Introduction to MCAS-Alt (8:30 am – 2:45 pm)

Teachers **with recent MCAS-Alt experience** should attend:
- MCAS-Alt Update—What’s New for 2019? (8:30 am – 11:15 pm)

And, if appropriate, a session on:
- Competency and Grade-level Portfolios: Assessments for students working at or close to grade-level (11:30 – Noon)

Presentation materials:
- Flash drive
- MCAS-Alt Materials Website: www.mcas-alt.org/materials/
TODAY’S AGENDA

- MCAS-Alt Statewide Results
- New and Notable for 2019
- Tips and Strategies
- Science and Technology/Engineering
- MCAS-Alt Skills Survey
Summary of 2019 Statewide Results and Teacher Survey
2019 MCAS-Alt Participation, Training, and Score Appeals Summary

• **7,421** MCAS-Alt portfolios were submitted (in one or more subjects) in 2019
 - A decrease of 180 students from 2018
 - 45,204 portfolio strands were scored and reported.

• **4,285** educators participated in 17 face-to-face training sessions last year.

• **241** MCAS-Alt score appeals were submitted last June.
 • 61 were approved (25.3%); 180 were denied (74.7%)
2016-2019 MCAS-Alt: Statewide Results (All Content Areas - All Grades)

<table>
<thead>
<tr>
<th>Year</th>
<th>Incomplete</th>
<th>Awareness</th>
<th>Emerging</th>
<th>Progressing</th>
<th>Partially Meeting Expectations/Needs Improvement+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>7.83%</td>
<td>10.09%</td>
<td>20.46%</td>
<td>70.35%</td>
<td>.14%</td>
</tr>
<tr>
<td>2017</td>
<td>9.10%</td>
<td>1.22%</td>
<td>19.12%</td>
<td>70.37%</td>
<td>.10%</td>
</tr>
<tr>
<td>2018</td>
<td>9.14%</td>
<td>1.31%</td>
<td>21.03%</td>
<td>67.29%</td>
<td>.13%</td>
</tr>
<tr>
<td>2019</td>
<td>1.75%</td>
<td>1.46%</td>
<td>22.05%</td>
<td>66.87%</td>
<td>.19%</td>
</tr>
</tbody>
</table>
2016-2019 MCAS-Alt: Statewide Results (ENGLISH LANGUAGE ARTS)

Incomplete Awareness Emerging Progressing Partially Meeting Expectations/Needs

<table>
<thead>
<tr>
<th>Year</th>
<th>Incomplete</th>
<th>Awareness</th>
<th>Emerging</th>
<th>Progressing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>5.28%</td>
<td>1.61%</td>
<td>36.10%</td>
<td>56.86%</td>
</tr>
<tr>
<td>2017</td>
<td>4.98%</td>
<td>1.65%</td>
<td>32.22%</td>
<td>61.12%</td>
</tr>
<tr>
<td>2018</td>
<td>6.34%</td>
<td>1.81%</td>
<td>34.10%</td>
<td>57.70%</td>
</tr>
<tr>
<td>2019</td>
<td>5.80%</td>
<td>1.91%</td>
<td>36.30%</td>
<td>55.98%</td>
</tr>
</tbody>
</table>

Massachusetts Department of Elementary and Secondary Education
2016-2019 MCAS-Alt: Statewide Results (MATHEMATICS)

- **Incomplete**: 10.03% (2016), 12.63% (2017), 13.22% (2018), 11.80% (2019)
- **Awareness**: .92% (2016), 1.18% (2017), 1.34% (2018), 1.51% (2019)
- **Emerging**: 8.08% (2016), 8.33% (2017), 10.33% (2018), 9.86% (2019)
- **Progressing**: 80.84% (2016), 77.83% (2017), 75.00% (2018), 76.47% (2019)
Massachusetts Department of Elementary and Secondary Education

2016-2019 MCAS-Alt: Statewide Results (SCIENCE and TECH/ENG)

Incomplete
- 2016: 10.03%
- 2017: 12.63%
- 2018: 13.22%
- 2019: 10.65%

Awareness
- 2016: .92%
- 2017: 1.18%
- 2018: 1.34%
- 2019: 1.95%

Emerging
- 2016: 8.08%
- 2017: 8.33%
- 2018: 10.33%
- 2019: 17.47%

Progressing
- 2016: 80.84%
- 2017: 77.83%
- 2018: 75.00%
- 2019: 69.69%

Partially Meeting Expectations/Needs Improvement+
- 2016: .12%
- 2017: .01%
- 2018: .11%
- 2019: .24%

Massachusetts Department of Elementary and Secondary Education
Progressing is not “Passing”

- A score of **Progressing** means the student is making progress, but still achieving below grade-level expectations.
- He or she is:
 - steadily learning new knowledge, skills, and concepts
 - requires minimal prompting and assistance
 - performance is basically accurate
- **Progressing** does **not** mean the student has achieved a passing score on MCAS, nor met the state’s graduation requirement.
 - MCAS-Alt scores are included in school/district results as **Not Meeting Expectations**.
- Schools receive credit for MCAS-Alt scores for **accountability**.
2019 Teacher Survey Results

• 92% (2,218) of lead teachers (2,403) responded to the survey.

• How many portfolios did each teacher submit?
 o 81% submitted 1-6
 ▪ 58% submitted 1-3
 ▪ 23% submitted 4-6
 o 13% submitted 7-10
 o 6% submitted more than 10

• 24% (about 540) did MCAS-Alt for the first time in 2019.
• Received assistance/support with portfolio:
 o 51% from paraprofessional
 o 40% from another special educator
 o 19% from the student
 o 4% from a general educator
 o 48% had classroom coverage or flex time.

• 98.7% teach standards-based knowledge, skills, and concepts at times other than during portfolio creation.

• 96.3% used similar data collection methods for other instruction.
New and Notable for 2020 MCAS-Alt
What’s New for 2020?

• Portfolios must be submitted (i.e., shipped from your school) by 5:00 p.m. on Friday, April 3, 2020.
 o Order materials for each student between January 6–17, 2020.

• Use the Fall 2019 Resource Guides to the MA Curriculum Frameworks for Students with Disabilities for students taking MCAS-Alt in all subjects

• Major revisions to Science and Technology/Engineering (STE)
 o Entry points have been revised for grades Pre-K to 12.
 o High School Biology and Intro Physics (but not Chemistry or Tech/Eng) will use new (2016) STE standards and portfolio format.
New for 2020: ELA–Writing

• ELA-Writing
 o Only one entry point to assess each text type:
 “Use the student's primary mode of communication to express or create a writing sample that is a(n)
 ▪ opinion/argument
 ▪ narrative (including poetry)
 ▪ informative/explanatory text”

• Writing samples must be on three different topics.
• Emphasis on independent work by student using his/her primary mode of communication
Some Writing Samples Scorers Shared with Us...

Directions: *Create a caption for each picture*

1. The cat is not happy. What her suit. Thename of her tail look like dear things you just stuff with.

2. *Oh no the lunch kid say!* the keys are going to cat me and the students dressed hungry. I am not like the others wear some clothes.

3. *It's when I first got potty trained. It didn't go as planned. I tried to hold mycolo up and I justrapidly fallin.*
New for 2020: Mathematics

- **Grade 6 Requirements**: *Statistics and Probability* will replace *Ratios and Proportional Relationships* as a required mathematics domain for the grade 6 mathematics portfolio.
 - The second required mathematics domain in grade 6 will remain *The Number System*.

MCAS-Alt Skills Survey
New for 2020: MCAS-Alt Skills Survey

- The skills survey will require **pre-testing each student** on a range of skills in the required strands/domains.
- Then, teachers select entry points that reflect results of skills survey.
- Print out and include results of each student’s skills survey after completed *Strand Cover Sheet*.
- Results will be included in the portfolio score.
- This process will resolve several lingering challenges:
 - Familiarize teachers with the full range of standards and possible entry points
 - Help select more appropriate entry points (or access skills)
 - Discourage choosing entry points and access skills that are too easy
 - May result in moving *some* students off the MCAS-Alt to other MCAS formats (e.g., standard test or grade-level/competency portfolios)
 - Assist DESE to meet federal requirements
Provision in the *Every Student Succeeds Act* (ESSA)

- Assessments based *entirely* on a portfolio design will no longer be permitted, USED says.

 “...student assessments for accountability...may [only] be *partially* delivered in the form of portfolios, projects, or extended performance tasks.”

 —Every Student Succeeds Act (ESSA)

- States must **redesign** or **replace** their portfolio assessments.

- Our proposed solution to meet this requirement:

 Add a component to the existing MCAS-Alt that is:

 o Standardized
 o Meaningful
 o Measurable
 o Included in the Score
Overview of MCAS-Alt SKILLS SURVEY

- Survey includes a list of critical skills in each strand/domain.
- Teacher will briefly assess student on skills listed in the required strand/domain BEFORE selecting entry points or access skills for the MCAS-Alt portfolio.
- Check column A, B, C, D, or E for each skill (See Scoring Rubric below).

<table>
<thead>
<tr>
<th>Scoring Rubric for MCAS-Alt Skills Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Student cannot perform this skill.</td>
</tr>
</tbody>
</table>

- Print out the results and include in the portfolio, just behind the Strand Cover Sheet.
Guidance on Administering the SKILLS SURVEY

• Teachers may use any combination of the following methods to assess each skill:
 o 2–3 tasks, based on the examples provided in the survey form; OR
 o tasks designed by the teacher, accommodated for each student’s instructional level and needs; OR
 o observations, informal assessments, progress reports, or classroom work.
Grade 5 Mathematics

Number and Operations in Base Ten (NBT)

<table>
<thead>
<tr>
<th>Using objects, manipulatives, technology, or paper-pencil, student can:</th>
<th>A (0% unable)</th>
<th>B (Up to 25% rarely)</th>
<th>C (Up to 50% occasionally)</th>
<th>D (Up to 75% more often than not)</th>
<th>E (Up to 100% almost always)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Count by ones to 10.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Represent up to 5 objects with numerals, including 0.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Compose numbers from 1 to 9 to create 10, using objects.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Count by tens to 100.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Count forward beginning from a given number up to 100 (e.g., count on from 23).</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Identify “ten more” (or “ten less”) than a given two-digit number.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Add and subtract single-digit numbers.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Add and subtract two-digit numbers.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Round a given amount of money to the nearest dollar (e.g., $2.57 rounds to $3.00).</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Round whole three-digit numbers to the nearest 100.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Multiply a one-digit number by a two-digit number.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Divide a three-digit number by a one-digit number (without remainders).</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MCAS-Alt SKILLS SURVEY – Sample (ELA – Language)

ELA—All Grades

Language (Vocabulary Acquisition and Use)

<table>
<thead>
<tr>
<th>Based on exposure to vocabulary during academic activities, student can:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communicate answers to simple questions about familiar objects.</td>
<td>0% (unable)</td>
<td></td>
<td></td>
<td>Up to 75% (frequently)</td>
<td>X</td>
</tr>
<tr>
<td>2. Identify familiar objects/actions by name.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Match given words or symbols to pictures that mean the same or similar thing.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Answer questions about the meaning of words found in stories, poems, or during other academic activities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5. Identify words/symbols/pictures that are opposite in meaning.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Identify words/symbols/pictures that are similar in meaning.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Use phrases to express a need, request, idea, or response during an academic activity.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Describe key attributes of different objects (e.g., the flower is colorful).</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Communicate using common temporal words (e.g., before, after, now, later, first, next).</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Identify examples of figurative language (e.g., idiom, metaphor, simile, hyperbole, or personification) used in a text.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Directions: Check boxes below for each task that the student can perform **independently, at least some of the time** (i.e., “occasionally”).
Then, select entry points from the highest grade span in which checked boxes appear.

3. Analyzing and Interpreting Data

<table>
<thead>
<tr>
<th>Less Complex</th>
<th>PreK–Grade 2</th>
<th>Grades 3–5</th>
<th>More Complex</th>
<th>Grades 6–8</th>
<th>Grades 9–12</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Display data visually using a simple graph, table, or picture to show information on a topic.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Make predictions on a topic prior to collecting data/observations.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☒ Represent data on a bar graph, pictograph, and/or circle graph.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☒ Identify patterns by grouping information/data by similar observable properties.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Answer questions based on a representation of a data set.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Compare predictions to actual data and/or observations from an investigation.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Use data and/or observations to identify patterns about a topic.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☒ Use data and/or observations to identify relationships between topics, ideas, or concepts.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Evaluate data and/or observations from tests of an object or tool to determine if it works as intended.</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☒ Draw conclusions based on evidence or observations (e.g., from an investigation).</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Use data and/or observations from an investigation to interpret features of the data or draw conclusions.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Describe one or more patterns in a data set.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Analyze/interpret data to make sense of a topic.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Compare and contrast two data sets.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Use observations and/or data to evaluate and/or refine a design solution.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Analyze data from a table or graph, citing details and/or evidence from the display.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ Create two or more appropriate visual representations of the same data set (e.g., line graph, bar graph, circle graph, table, etc.).</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐ My student cannot perform any of the skills in this science practice.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Guidance for Administering the SKILLS SURVEY (Cont’d)

• Administer the first task listed in the strand/domain to the student.
• If the student does not respond on the first attempt, repeat the task with a verbal reminder or other prompt (if needed), but do not give the answer. (Note: a prompted response may be accurate, but it is not independent.)
• If the student responds to the first task, give a second, more complex task. Repeat with a prompt if needed. Make notes on the survey form to remind you of the student’s performance of each task.
• If the student does not respond to the second task, even with a prompt, do not introduce a third task. Simply mark the column (A, B, C, D, or E) that most closely describes his or her performance of the skill.
• Introduce the next task. Repeat the steps above until all skills in the required strand/domain are assessed.
Interpreting the MCAS-Alt Skills Survey results

Once skills survey is completed:

1. Select entry points or access skills based on (or related to) skills that are checked in columns A, B, or C.
2. DO NOT select entry points for the MCAS-Alt based on skills that are checked in columns D or E (i.e., skills that students have learned or almost learned).
3. If student cannot perform any standards-based skills in the strand/domain (i.e., if all skills are checked in column A), consider assessing access skills (i.e., developmental motor and communication skills).
4. If student has already learned the vast majority of skills on survey (i.e., if almost all skills are checked in columns D or E), reconsider whether MCAS-Alt is the “right” assessment for the student.
Overview of “Next Gen” Science and Technology/Engineering (STE)

Patricia Sprano and Dianne Costello
MCAS-Alt Teacher Consultants
Features of the Massachusetts 2016 STE Curriculum Frameworks

- **Grades 5 and 8 disciplines:**
 - Life Science, Physical Science, Earth and Space Science, and Technology/Engineering

- **High School disciplines:**
 - Biology, Introductory Physics, Chemistry, and Technology/Engineering

- Topics in each discipline are called **core ideas.**

- In addition to science **content**, the STE Framework emphasizes the use of 8 **science practices** that promote engagement in scientific inquiry and engineering design skills.
8 Science Practices

1. Asking (Scientific) Questions and Defining Problems

2. Planning and Carrying Out Investigations (to gather data and perform experiments to answer a scientific question)

3. Using Mathematical and Computational Thinking (to answer scientific questions)

4. Analyzing and Interpreting Data (to recognize patterns and analyze and organize data)
Science Practices (cont’d)

5. Developing and Using Models (to think about and make sense of an experience, and make predictions, using tangible tools, displays, and illustrations)

6. Constructing Explanations and Designing Solutions (to explain phenomena and use evidence to support explanations)

7. Engaging in Argument from Evidence (to support a claim and critique competing arguments)

8. Obtaining, Evaluating, and Communicating Information (to evaluate and present information from scientific texts from multiple sources)
Science & Engineering Processes

Scientific Inquiry

- Asking Questions and Defining Problems
- Developing and Carrying Out Investigations
- Communicating Evidence
- Analyzing and Interpreting Data

Engineering Design

- Identify a Need or Problem
- Design
- Research
- Provide Feedback
- Test and Evaluate
- Prototype
- Communicate, Explain, and Share
Features of the new STE portfolio structure

• Allows teachers to assess a **unit of science instruction**, rather than assess a single skill.
 - Encourages the assessment of **multiple entry points (or access skills) in a strand**.
 - Embeds STE entry points within the science practices
 - Promotes a **range of instructional approaches** to teach a core idea

• Entry points are listed for **grade spans**.
 - PreK–grade 2; Grades 3–5; 6–8; 9–12

• **No data charts are required.**
Earth and Human Activity

<table>
<thead>
<tr>
<th>Core Idea</th>
<th>Learning Standards as written</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth and Human Activity</td>
<td></td>
</tr>
</tbody>
</table>
| 8.MS-ESS3-1 | Analyze and interpret data to explain that the Earth’s mineral and fossil fuel resources are unevenly distributed as a result of geologic processes.
Clarification Statement:
♦ Examples of uneven distributions of resources can include where petroleum is generally found (locations of the burial of organic marine sediments and subsequent geologic traps), and where metal ores are generally found (locations of past volcanic and hydrothermal activity). |
| 8.MS-ESS3-5 | Examine and interpret data to describe the role that human activities have played in causing the rise in global temperatures over the past century.
Clarification Statements:
♦ Examples of human activities include fossil fuel combustion, deforestation, and agricultural activity.
♦ Examples of evidence can include tables, graphs, and maps of global and regional temperatures; atmospheric levels of gases such as carbon dioxide and methane; and the rates of human activities. |
Core Idea

Earth and Human Activity

1. Asking questions/defining problems
 - Ask questions about what would happen if the human population continues to increase and natural resources (e.g., water, energy supplies) continue to diminish
 - Use prior knowledge to describe problems that can be solved by forecasting geological events (e.g., earthquakes, floods)
 - Generate scientific questions about climate change based on research and/or observations
 - Generate scientific questions about fossil fuel distribution on Earth based on research and/or observations

 - Generate scientific questions about human activities and technologies that can impact the use of natural resources based on research and/or observations

Science Practice

3. Analyzing and interpreting data
- Use observations and/or data to determine the likelihood of future geologic events in a certain location based on data from past geological events (e.g., earthquakes, volcanic eruptions, floods, landslides)
- Represent data visually (e.g., bar graphs, pictographs, and/or pie charts) to reveal patterns about the Earth’s mineral and fossil fuel resources
- Analyze and interpret data to make sense of the rise in global temperatures
- Compare and contrast data showing the increase of human population to the impact on natural resources
- Use observations and/or data to evaluate and/or refine design solutions related to the technologies that can slow the depletion of natural resources (e.g., switching to renewable energy sources)

5. Developing and using models
- Develop, revise, and/or use a model to show/explain the location of large concentrations of the Earth’s minerals and fossil fuels on a map
- Develop, revise, and/or use a model to show/explain the geologic processes that resulted in uneven distribution of Earth’s resources (e.g., earthquakes, volcanic eruptions, hydrothermal activity)
- Develop, revise, and/or use a model to illustrate examples of human activities that impact the rise of global temperatures (e.g., fossil fuel combustion, deforestation, agriculture)

Entry Points are listed for grade-spans.
Grades 5 and 8
Science and Technology/Engineering (STE)
What’s New in STE for Grades 5 and 8?

• **MCAS-Alt Skills Survey** must be completed for each science practice.

• **Entry points** have been revised (more appropriate and consistent within and across grade spans)

• **STE Summary Sheet:** Don’t need to document student responses if primary evidence is attached.

• **K-W-L charts** are no longer considered primary evidence, but can be used for self-evaluation.
MCAS-Alt Skills Survey for STE

Complete the skills survey for grades 5 and 8 STE, and High School Biology and Intro Physics.

1. Skills survey should be completed **once** for each student in **all eight science practices**.

2. Teachers should check boxes when student can perform the skill **independently, at least some of the time**.

3. Then, teacher selects entry points in that practice at the **highest grade span** in which the checked boxes appear.

4. Entry points may be selected from different grade spans for each science practice, as determined by the results of the skills survey.
MCAS-Alt Skills Survey: Science Practice #1 (Excerpt)

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Complex</td>
<td>PreK–Grade 2</td>
</tr>
<tr>
<td>More Complex</td>
<td>Gr. 3–5</td>
</tr>
<tr>
<td></td>
<td>Gr. 6–8</td>
</tr>
<tr>
<td></td>
<td>Gr. 9–12</td>
</tr>
</tbody>
</table>

1. Asking Questions and Defining Problems

- □ Ask clarifying questions about a topic or idea.
- □ Ask relevant questions based on observations.
- □ List or record relevant questions on a topic.
- □ Define a simple problem related to a topic.
- □ Use observations and/or data to ask a question about a topic or idea.
- □ Identify questions on a topic that can be answered by an investigation.
- □ Define a simple problem that can be solved related to a topic.
- □ Identify scientific (testable) and non-scientific (non-testable) questions.
- □ Generate scientific questions about a topic based on research and/or observations.
- □ Evaluate a scientific question to determine if it is testable and/or relevant to a topic.
- □ Generate a scientific question about a topic that is testable using available resources.
- □ My student cannot perform any of the skills in this science practice.
Step-by-Step Requirements for Grades 5 and 8 STE Portfolio

• **Step 1:** Complete MCAS-Alt Skills Survey in STE.

• **Step 2:** Educators select three of four disciplines to assess:
 - Earth and Space
 - Life Science
 - Physical Science
 - Technology/Engineering

• **Step 3:** Select one core idea for each discipline.

• **Step 4:** Select six (6) entry points/access skills in each core idea.
 - Include at least three (3) different science practices across the six (6) entry points/access skills.
 - Select entry points at highest grade in which boxes were checked on skills survey
STE Portfolio Strand Requirements (cont’d..)

- **Step 5: Complete and submit one STE Summary Sheet for each entry point/access skill** (at least six are required).
 - Include:
 - Student’s Name and Date of activity
 - Core Idea
 - Entry Point or Access Skill addressed in the activity
 - Science Practice (number 1–8) documented in the evidence
 - % Accuracy and % Independence for each task or response, plus overall percent
 - Description of each activity

- **Step 6: Select three representative pieces of primary evidence for the entry point/access skill.**
 - Attach to corresponding Summary Sheet and include in portfolio.
 - Work samples, photos, and/or video may be submitted.
 - Include examples of self-evaluation.
Portfolio Strand Requirements (cont’d)

• **Step 6a:**
 - If evidence is attached to STE Summary Sheet:
 - list the **overall percent of accuracy and independence** on the STE Summary Sheet for the attached evidence.
 - **describe the activity,** including what student was asked to do and how they did it.

• **Step 6b:**
 - If evidence is **NOT** attached to STE Summary Sheet:
 - document **percent of accuracy and independence for each task or response** on bottom portion of STE Summary Sheet (bottom portion is auto-generated by forms/graphs, which calculates overall percent).
 - **describe the activity,** including what student was asked to do and how they did it.
Complete One STE Summary Sheet for each Entry Point or Access Skill

Name, Date, Grade, Discipline, Core Idea, Science Practice #

Entry Point or Access Skill

Description of activity

If evidence is NOT attached, document each question or task, and the accuracy and independence of student’s responses.

Check box if self-evaluation is included

If evidence IS attached, summarize the accuracy and independence of student’s responses.
Illustrate, construct, and/or label a model to show/explain the ways in which individuals conserve natural resources (e.g., reusing, recycling, repurposing)
STE Summary Sheet
(Example):
Evidence Attached, with Self-Evaluation

Plan and/or follow the steps of an investigation to collect data and/or observations about the ways in which individuals can reduce the consumption of natural resources (e.g., reusing, recycling, repurposing).

Self Evaluation
I chose my activity
I chose my material:
I fixed a mistake:
I asked for help:
I think I did a great job ☺️ or
I think I need more practice ☹️
STE Strand Cover Sheet

Check the Strand Cover Sheet

✓ 6 Summary Sheets
✓ 3 Different Practices
✓ 3 Pieces of Evidence
✓ 2 Self-Evaluations

2020 MCAS-Alt
Science and Technology/Engineering (STE)
STE STRAND COVER SHEET

(A completed STE Strand Cover Sheet must be included at the beginning of each STE discipline)

(1) Student’s Name: Student
(2) Student’s grade as reported in the Student Information Management System (SIMS): 08
(3) a. Discipline: SPACE AND SPACE SCIENCES
 b. Core Idea: Earth and Human Activity
 c. Learning Standard:
 Examine and interpret data to describe the role that human activities have played in the
 causing of the rise in global temperatures over the past century.

<table>
<thead>
<tr>
<th>Practice# (1-8)</th>
<th>Evidence Attached</th>
<th>Date</th>
<th>My Description</th>
<th>Self-Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>No</td>
<td>1/07/2020</td>
<td>Sort Recyclable Materials</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>1/04/2020</td>
<td>Label a Model 1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>1/15/2020</td>
<td>Sort Materials - Planter 2</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>1/24/2020</td>
<td>Label a Model - Planter 2</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>3/05/2020</td>
<td>Create Presentation - Recycling and Repurposing</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>3/11/2020</td>
<td>Give Presentation - Recycling and Repurposing</td>
<td>No</td>
</tr>
</tbody>
</table>
STE Requirements for each Core Idea

Three different Science Practices must be represented.
Example: Integrated Units of STE Study for Grades 5 and 8

• **Earth and Space Science**
 o Core Idea: Earth and Human Activity
 ▪ Activities could include: Recycling or reusing resources

• **Life Science**
 o Core Idea: From Molecules to Organisms and Processes
 ▪ Activities could include: the effects of sun on the growth of plants

• **Technology/Engineering**
 o Core Idea: Engineering Design
 ▪ Activities could include: generating a design solution to a problem using pictures or drawing (e.g., creating a planter from recycled material)

Note: Student met all requirements for each discipline.
Teacher integrated activities in three disciplines.

Student read about recycling and repurposing resources. Identified questions that could be answered by an investigation. (Earth and Space)

Student recorded the effects of the sun on the plant by journaling/drawing. (Life Science)

Planter was created after trying various prototypes, using a recycled bottle and a cup. (Tech/Eng)
High School “Next-Generation” Science and Technology/Engineering (STE)
High School STE Requirements Using “Next-Gen” Format

Step 1: Complete Skills Survey for each science practice.

Step 2: Choose one discipline:
 - Biology OR Introductory Physics

Step 3: Choose 3 different Core Ideas from the chosen discipline.

Step 4: Select six (6) entry points/access skills in each core idea.
 - Include at least three (3) different science practices across the six (6) entry points/access skills.
 - Select entry points at highest grade in which boxes were checked on skills survey

Step 5: Complete and submit one STE Summary Sheet for each entry point/access skill.

Step 6: Select and attach three representative pieces of primary evidence.

Step 7: Follow prompts listed on the STE Summary Sheet, for attaching evidence.
Choose 3 of the 4 Core Ideas

<table>
<thead>
<tr>
<th>Core Idea</th>
<th>Access Skills</th>
<th>High School</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Molecules to Organisms: Structures and Processes</td>
<td>Pages 51–53</td>
<td>Pages 181–182, 186–189</td>
</tr>
<tr>
<td>Heredity: Inheritance and Variation of Traits</td>
<td>Pages 56–58</td>
<td>Pages 184–185, 193–195</td>
</tr>
<tr>
<td>Biological Evolution: Unity and Diversity</td>
<td>Pages 58–60</td>
<td>Pages 185, 195–198</td>
</tr>
</tbody>
</table>
Core Idea: Ecosystems: Interactions, Energy, and Dynamics

<table>
<thead>
<tr>
<th>Entry Point</th>
<th>What it looks like...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct an explanation to describe the role of producers, consumers, and decomposers in an ecosystem, based on a variety of sources (e.g., model, research, investigation, simulation) (STE Resource Guide, p. 191)</td>
<td>Use an energy or trophic level pyramid to help explain the roles of producers, consumers and decomposers by showing where they are located on the pyramid.</td>
</tr>
</tbody>
</table>
Biology: What it Could Look Like (Examples)

Core Idea: Heredity: Inheritance and Variation of Traits

Science Practice #3: Analyzing and interpreting data

<table>
<thead>
<tr>
<th>Entry Point</th>
<th>What it looks like...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze data from a Punnett square or pedigree to determine the inheritance patterns of a particular trait (STE Resource Guide, p. 193)</td>
<td>Use information about dominant and recessive forms of traits to create a Punnett square that predicts the genotypes and phenotypes of offsprings. For example: Height T is dominant for tall trait and t is recessive for short trait. If a short plant is crossed with a hybrid tall plant what is the likelihood that the offspring will be short?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
Science Practice #2: Planning and carrying out investigations

<table>
<thead>
<tr>
<th>Entry Point</th>
<th>What it looks like...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select and/or create the appropriate table or organizer to collect data from an investigation of natural selection (e.g., natural selection game) (STE Resource Guide, p. 196)</td>
<td>Students watch a video about natural selection and create a data table showing the results. For example: an investigation involving populations of frogs living in a pond where the water gets darker each year over a period of 4 years. Student creates a table showing what happened to the number of light and dark colored frogs in the pond over time.</td>
</tr>
</tbody>
</table>
Entry points spiral down in complexity at each grade level within each science practice (Example)

Core Idea—Biological Evolution: Unity and Diversity

(Practice #3, Analyzing and Interpreting Data)

• Analyze and interpret data to make sense of the process of natural selection in a plant or animal population.
 (Grades 6-8)

• Draw conclusions based on evidence (e.g., from an investigation) about features of animals, that enable them to survive in their habitat (e.g., thick fur in a cold climate, webbed feet in frogs, protective coloration.
 (Grades 3-5)

• Display data using a simple graph or pictures to show living things in a local habitat (e.g., school yard).
 (Grades Pre-K-2)
High School “Legacy”
Science and Technology/Engineering (STE)
“Legacy” Format for High School Chemistry and Tech/Eng

Step 1: Complete “Legacy” STE **Skills Survey** (see next slide).

Step 2: Choose **one** discipline

 - **Chemistry OR Technology/Engineering**

Step 3: Use the “legacy” STE Resource Guide to choose **3 different standards** from the selected discipline.

Step 4: Select entry points based on results of STE skills survey.

Step 5: For **each** measurable outcome, submit the following:

 - One data chart measuring the student’s achievement of the measurable outcome on at least eight different dates
 - Two pieces of primary evidence, include accuracy and independence
 - Examples of self-evaluation
Skills Survey for STE “Legacy” Disciplines

- Complete the Skills Survey for STE “Legacy” High School Chemistry or Tech/Eng

Chemistry (Legacy standards)

(Note: For this high school STE discipline, conduct the Skills Survey below.)

<table>
<thead>
<tr>
<th>Illustrate, demonstrate, or respond verbally to:</th>
<th>A (0% [unable])</th>
<th>B (Up to 25%)</th>
<th>C (Up to 50% [occasionally])</th>
<th>D (Up to 75% [more often than not])</th>
<th>E (Up to 100% [almost always])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Group objects by one similar observable property (e.g., size, shape, color, weight, or texture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identify three properties of three different objects/materials (e.g., the ball is round, smooth, and blue; water is cold, wet, and clear)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identify up to 3 given materials/others as either solid, liquid, or gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Give examples of a physical versus chemical change (i.e., a physical change doesn’t change the substance (melting an ice cube, tearing paper, mixing flour and an egg); in a chemical change (e.g., combustion), a new substance is formed and energy is either given off or absorbed) (e.g., rusting iron, baking a cake, burning wood)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Give examples of each basic form of energy (i.e., light, sound, heat, electrical, and/or magnetic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Classify up to three substances as either a mixture (e.g., soil, sand, coffee with milk, sugar and water) or a pure substance (e.g., air, water, diamonds, table salt, sugar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology/Engineering (Legacy standards)

(Note: For this high school STE discipline, conduct the Skills Survey below.)

<table>
<thead>
<tr>
<th>Illustrate, demonstrate, or respond verbally to:</th>
<th>A (0% [unable])</th>
<th>B (Up to 25%)</th>
<th>C (Up to 50% [occasionally])</th>
<th>D (Up to 75% [more often than not])</th>
<th>E (Up to 100% [almost always])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name three tools and what they were designed to do.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identify parts of the human body that act as tools (e.g., teeth for cutting, fingers for grasping).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Match various tools to their intended purpose.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Determine whether given objects are natural or human-made.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Identify different means of transportation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Draw or describe a picture/diagram of a specific object you would like to construct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Describe the materials you would use to build the object you would like to construct and why you chose those materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Name or describe at least one tool you would use to construct the object you chose, and describe why you chose the tool.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Match a symbol (without text) used to communicate an idea to its message or meaning (e.g., symbols used for wheelchair access, danger, bicycle lane).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Calculate the actual length of an object from a scaled drawing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence may be collected over two consecutive school years (current and one prior school year)

Grades 5 and 8:

- **All STE portfolios** must include evidence based on the “next-gen” STE standards using the new format, including those begun last year (2018-2019).

High School 9 and 10:

- STE portfolios in *Biology* and *Introductory Physics* **begun this school year** must include evidence based on “next-gen” STE standards using the new format.
 - For STE portfolios **begun in 2018-2019** in *Biology* and *Introductory Physics*, educators should contact MCAS-Alt@cognia.org to gain access to “legacy” Forms and Graphs Online in Biology and Introductory Physics.
- STE portfolios in *Technology/Engineering* and *Chemistry* will continue to be based on “legacy” STE standards and use previous portfolio format and structure.
 - “Legacy” STE Resource Guide is available on Forms and Graphs Online or [MCAS-Alt website](http://www.mcasalt.org).
Additional STE Resources
Resources

• DESE Model Curriculum Units – http://www.doe.mass.edu/candi/model/download_form.aspx
• NGSS/NSTA – http://ngss.nsta.org/Classroom-Resources.aspx
• NGSS – Review of Lessons https://www.nextgenscience.org/resources/examples-quality-ngss-design
• PHET Simulations – https://phet.colorado.edu/en/simulations/category/new
• American Museum of Natural History – https://www.amnh.org/explore/curriculum-collections
• Museum of Science – Educator Resource Center https://www.mos.org/educators
Tips and Strategies for the MCAS-Alt

Laura Hines and Sheila Chamberlin
MCAS-Alt Teacher Consultants
Understanding the Portfolio Feedback Form (PFF)

<table>
<thead>
<tr>
<th>ENGLISH LANGUAGE ARTS</th>
<th>Strand</th>
<th>Level of Complexity</th>
<th>Demonstration of Skills</th>
<th>Independence</th>
<th>Self-Evaluation</th>
<th>Generalized Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Language</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td>showed evidence of open-ended, creative approaches that allowed student to demonstrate knowledge and skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reading</td>
<td>3</td>
<td>M</td>
<td>M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td>All skills listed in the measurable outcome were not addressed during each activity on the data chart (all skills must be addressed in each activity). All skills listed in the measurable outcome were not addressed or at least two pieces of primary evidence (all skills must be addressed in each activity).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Writing</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td>Supporting documentation in the strand described the learning occurred and was helpful in determining the score.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATHEMATICS</th>
<th>Domain</th>
<th>Level of Complexity</th>
<th>Demonstration of Skills</th>
<th>Independence</th>
<th>Self-Evaluation</th>
<th>Generalized Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number and Operations in Base Ten</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Comments</td>
<td>showed evidence of open-ended, creative approaches that allowed student to demonstrate knowledge and skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number and Operations - Fractions</td>
<td>3</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Comments</td>
<td>At least two pieces of primary evidence did not address the skill listed in the measurable outcome.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of Complexity</td>
<td>Level of Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Portfolio strand reflects little or no basis in, or is unmatched to, curriculum framework learning standard(s) required for assessment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Student primarily addresses motor and communication “access skills” during instruction based on curriculum framework standards in this strand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Student addresses curriculum framework standards that have been modified below grade-level expectations in this strand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of Complexity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demonstration of Skills and Concepts (Accuracy)

<table>
<thead>
<tr>
<th>Level of Complexity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**: The portfolio strand contains insufficient information to determine a score.
- **2**: Student’s performance is primarily inaccurate and demonstrates minimal understanding in this strand (0–25% accurate).
- **3**: Student’s performance is limited and inconsistent with regard to accuracy and demonstrates limited understanding in this strand (26–50% accurate).
- **4**: Student’s performance is mostly accurate and demonstrates some understanding in this strand (51–75% accurate).

Independence

<table>
<thead>
<tr>
<th>Level of Complexity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**: The portfolio strand contains insufficient information to determine a score.
- **2**: Student requires extensive verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (0–25% independent).
- **3**: Student requires frequent verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (26–50% independent).
- **4**: Student requires some verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (51–75% independent).

Self-Evaluation

<table>
<thead>
<tr>
<th>Level of Complexity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**: Evidence of planning, self-correction, task-monitoring, goal-setting, and reflection was not found in the student’s portfolio in this content area. Only one example of self-evaluation was found in this strand.
- **2**: Student infrequently plans, self-corrects monitors, sets goals, and reflects in this content area — only one example of self-evaluation was found in this strand.
- **3**: Student plans, self-corrects monitors, sets goals, and reflects in this content area — multiple examples of self-evaluation were found in this strand.
- **4**: Student requires minimal verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (76–100% independent).

Generalized Performance

<table>
<thead>
<tr>
<th>Level of Complexity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**: Student demonstrates knowledge and skills in one context or uses one approach and/or method of response and participation in this strand.
- **2**: Student demonstrates knowledge and skills in one context or uses one approach and/or method of response and participation in this strand.
- **3**: Student demonstrates knowledge and skills in multiple contexts or uses multiple approaches and/or methods of response and participation in this strand.
- **4**: Student requires minimal verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (76–100% independent).
If your PFF shows **Level of Complexity = 3** (entry points):

- The evidence indicates that student is addressing academic content and skills based on curriculum framework standards in this strand, but **modified to a lower level of complexity** (i.e., below grade-level expectations).
If your PFF shows LOC=2 (access skills):

- evidence indicates that the student is addressing communication, and/or motor skills ("access skills") **during instructional activities based on curriculum frameworks**
- may be exploring methods, tools, and materials in the content area, but **not yet addressing** academic content and skills in this subject.
If your PFF shows LOC=1:
• evidence in this strand documents instruction that is either unrelated or unmatched to the curriculum framework standards required for assessment.
• If a score of 1 is given in Level of Complexity, other rubric areas will not receive a score.
Level of Complexity = 1

Comments for LOC 1:

• “Entry point was not aligned with the required strand/domain because it was either excessively modified or was not found in the Resource Guide”

TIPS:

o Review the Educator’s Manual, pp. 24-26 on how to select an entry point.

o Use only current Resource Guides and/or Forms and Graphs Online when selecting an entry point.
Comments for an LOC 1:

- “Standard and/or entry point was not selected from the Vocabulary Acquisition and Use cluster, as required for the ELA-Language strand.”

TIP:

Use Forms and Graphs Online program to ensure that you select from the correct cluster for ELA–Language. *(Vocabulary Acquisition and Use.)*
This rubric area measures the degree to which the student gave the correct or desired response(s) during a task or activity.

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The portfolio strand contains insufficient information to determine a score.</td>
<td>Student’s performance is primarily inaccurate and demonstrates minimal understanding in this strand (0–25% accurate).</td>
<td>Student’s performance is limited and inconsistent with regard to accuracy and demonstrates limited understanding in this strand (26–50% accurate).</td>
<td>Student’s performance is mostly accurate and demonstrates some understanding in this strand (51–75% accurate).</td>
<td>Student’s performance is accurate and is of consistently high quality in this strand (76–100% accurate).</td>
</tr>
</tbody>
</table>

Comments: Strand showed evidence of open-ended, creative approaches that allowed student to demonstrate knowledge and skills.
This rubric area measures the frequency with which cues and prompts were used to assist the student in responding to a task, activity, or assignment.

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The portfolio strand contains insufficient information to determine a score.</td>
<td>Student requires extensive verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (0–25% independent).</td>
<td>Student requires frequent verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (26–50% independent).</td>
<td>Student requires some verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (51–75% independent).</td>
<td>Student requires minimal verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (76–100% independent).</td>
</tr>
</tbody>
</table>
ENGLISH LANGUAGE ARTS

<table>
<thead>
<tr>
<th>Achievement Level</th>
<th>Strand</th>
<th>Level of Complexity</th>
<th>Demonstration of Skills</th>
<th>Independence</th>
<th>Self-Evaluation</th>
<th>Generalized Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerging</td>
<td>Language</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reading</td>
<td>3</td>
<td>M</td>
<td>M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td></td>
<td>All skills listed in the measurable outcome were not addressed during each activity on the data chart (all skills must be addressed in each activity). All skills listed in the measurable outcome were not addressed on at least two pieces of primary evidence (all skills must be addressed in each activity).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Writing</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td></td>
<td>Supporting documentation in the strand described how the learning occurred and was helpful in determining the score.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“M” is given in both Demonstration of Skills and Independence.

Portfolio strand contains insufficient information to determine a score.
Comment on PFF:

- “All skills listed in the measurable outcome were not addressed during each activity on the data chart”
- “All skills listed in the measurable outcome were not addressed on at least two (2) pieces of evidence.”

TIPS:

1. Determine if your entry point contains more than one skill?
2. If yes, will you be assessing both skills?
 a) If yes, then use the measurable outcome “as-is.”
 b) If no, then choose which skill to assess and be sure the measurable outcome reflects only that skill.
ELA: Demonstration of Skills / Independence

<table>
<thead>
<tr>
<th>ENGLISH LANGUAGE ARTS</th>
<th>Level of Complexity</th>
<th>Demonstration of Skills</th>
<th>Independence</th>
<th>Self-Evaluation</th>
<th>Generalized Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Comments</td>
<td>Strand showed evidence of open-ended, creative approaches that allowed student to demonstrate knowledge and skills.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>3</td>
<td>M</td>
<td>M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Comments</td>
<td>All skills listed in the measurable outcome were not addressed during each activity on the data chart (all skills must be addressed in each activity). All skills listed in the measurable outcome were not addressed on at least two pieces of primary evidence (all skills must be addressed in each activity).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Comments</td>
<td>Supporting documentation in the strand described how the learning occurred and was helpful in determining the score.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFF Comment ELA–Writing:

“Supporting documentation in the strand described how the learning occurred and was helpful in determining the score.”
TIP: Include screenshot of the student’s device with prompting.
Comment on PFF:

“At least 3 final writing samples were required for the ELA–Writing strand, but were not submitted.”

TIPS:

• Submit 3 distinct final writing samples.
• Students addressing access skills must submit 3 final (permanent) products reflecting their participation in the creation of the sample.
• See “ELA-Writing Access Skills” PowerPoint on flash drive.
Comment on PFF for Number and Operations–Fractions:

“At least two (2) pieces of evidence did not address the skill listed in the measurable outcome.”
Comment on PFF:
“At least two (2) pieces of evidence did not address the skill listed in the measurable outcome.”

TIPS:

• Ask a content specialist to review the concept documented in the evidence.
• Review examples next to each entry point in the Resource Guide.
• Review the MCAS-Alt Skill Survey and/or Resource Guide for an entry point that may be a better “fit.”
• Attend a Portfolios-in-Progress review session.
Self-Evaluation

This area measures how aware the student is of his or her performance, and how often he or she makes decisions or choices that affect the performance.
PFF: Self-Evaluation

S-E=M: No evidence of student self-correcting, monitoring, reflecting, planning, setting goals in the strand.

S-E=1: One example of student self-correcting, monitoring, reflecting, planning, setting goals in the strand

S-E=2: Multiple examples of student self-correcting, monitoring, reflecting, planning, setting goals in the strand

TIPS:
- Build in choice-making and reflection opportunities before, during, and after instruction for the student.
- Ask student to correct his/her own work.
- Ask student to select work for the portfolio.
Example of Self-Evaluation

SELF ASSESSMENT: WHO ARE YOU AFTER THIS LESSON??

SHELDON
I UNDERSTAND AND CAN DO IT WITHOUT ANY MISTAKES
"Don't you think if I were wrong I'd know!?!?!?"

LEONARD
I UNDERSTAND AND CAN DO IT WITH A FEW MISTAKES
"Cuz that's how we role in the Shire!"

RAJ
I UNDERSTAND MOST OF THE TIME
"Can you at least tell me what went wrong? It's okay I can take anything!"

HOWARD
I AM STARTING TO UNDERSTAND
"Look what you have created here, it's like Nerdvana"

PENNY
I STILL DON'T UNDERSTAND
"I know you think you are explaining yourself, but you're really not"
Generalized Performance

This area measures the use of effective classroom strategies for ensuring that students are able to retain and transfer what they have learned.
PFF: Generalized Performance

GP=1: Student demonstrates knowledge and skills in one context or uses one approach and/or method of response and participation in this strand.

GP=2: Student demonstrates knowledge and skills in multiple contexts or uses multiple approaches and/or methods of response and participation in this strand.

TIPS:

- Differentiate instruction, instructional approach or application of the skill.
- Remember to include “**how student addressed the skill**” in the brief descriptions.
- Include different instructional approaches and response formats in the primary evidence.
PFF: General Portfolio Comments and Key

At bottom of PFF:

GENERAL PORTFOLIO COMMENTS

Portfolio showed evidence of a range of open-ended, creative approaches that allowed the student to demonstrate knowledge and skills.

KEY to PFF Symbols

- * Indicates this portfolio strand was required but not submitted.
- M Indicates that evidence was missing or was insufficient to determine a score in this rubric area.
- † Indicates the non-submission of a required MCAS-Alt content area OR may reflect that the student took standard MCAS for this content area.
- ‡ Achievement level will be determined prior to final reporting.
Make the MCAS-Alt meaningful for each student by:

- using the Skills Survey to
 - reveal the range of possible entry points.
 - identify a good starting point for your student.
 - complement the skills you already plan to teach each student.
- ensuring that a reliable communication system is in place and used.
- using same evidence, where possible, for more than one content area.
- review “Checking for Completeness” on flash drive.
Cross-Curriculum Strategies based on a STE unit

Science and Technology/Engineering

• Describe the characteristics of seasonal changes in the environment (STE Resource Guide, p. 19, science practice 6)

Reading Informational Text

• Describe facts learned from an informational text (ELA Resource Guide, p. 38)

ELA–Language (Vocabulary Acquisition and Use)

• Use multiple adjectives to describe an event, person, or object (ELA Resource Guide, p. 161)

ELA–Writing

• Use the student's primary mode of communication to express or create a writing sample that is based on an informative/explanatory text.
Cross-Curriculum Strategies: Access Skills

Access Skills (STE and ELA):

- **Science and Technology/Engineering:**
 - **Life Science** (Science Practice #2): Choose from an errorless array of materials (within a specified amount of time) during an investigation on body parts, body systems, senses, parts of plants, life cycle(s) or cells.

- **ELA-Language:**
 - **Vocabulary Acquisition and Use:** Choose from an errorless array of materials (within a specified amount of time) related to vocabulary acquisition. (Use same vocabulary materials as science investigation)
Tip: Be aware of Teacher-scribed Work Samples

- **Teacher-Scribed Work Samples** are used with students who cannot produce written work, whose handwriting is illegible, or who engage in activities that are difficult to document any other way.

- **Teacher-Scribed Work Samples** document student’s performance during a series of related trials conducted on a single day.

TIPS:

- Review examples in Access Skills PowerPoint on flash drive.
A well-organized portfolio makes it easy to find all the required elements for review.

- Use divider tabs between strands.
- Insert school/district calendar in left front pocket.
- Strand Cover Sheet followed by Skills Survey (completed), data chart, then primary evidence.
- Ensure that ELA–Writing pre-scored rubrics have same date as final sample.
My students scored the way I hoped they would... what now?

• Consider raising the bar for the students... increase the level of challenge.
• Differentiate tasks within lessons so all students are challenged and work at their own level.
• Work with general education teachers/content specialists.
• Seek out any inclusion or reverse inclusion opportunities so all students can learn together.
• Try something new! Look for measurable outcomes and lessons that engage each student.
“Playing It Safe”
to Get the Highest Score
What Does This Data Chart Tell You About the Student’s Achievement?

- Student mastered the skill after 2-3 attempts: probably too easy.
- Better to spend time teaching student more challenging skills.
• **Level of Complexity (LOC)**

<table>
<thead>
<tr>
<th>Level of Complexity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unmatched to Standard</td>
</tr>
<tr>
<td>2</td>
<td>Access Skills</td>
</tr>
<tr>
<td>3</td>
<td>Entry Points</td>
</tr>
<tr>
<td>4</td>
<td>Grade Level/Competency</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Most portfolio strands are LOC=3 (Entry Points)
Scoring Accuracy and Independence

Demonstration of Skills and Concepts (DSC) (Percent accuracy)

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The portfolio strand contains insufficient information to determine a score.</td>
<td>Student’s performance is primarily inaccurate and demonstrates minimal understanding in this strand (0–25% accurate).</td>
<td>Student’s performance is limited and inconsistent with regard to accuracy and demonstrates limited understanding in this strand (26–50% accurate).</td>
<td>Student’s performance is mostly accurate and demonstrates some understanding in this strand (51–75% accurate).</td>
<td>Student’s performance is accurate and is of consistently high quality in this strand (76–100% accurate).</td>
</tr>
</tbody>
</table>

Independence (IND) (Percent unassisted responses)

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The portfolio strand contains insufficient information to determine a score.</td>
<td>Student requires extensive verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (0–25% independent).</td>
<td>Student requires frequent verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (26–50% independent).</td>
<td>Student requires some verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (51–75% independent).</td>
<td>Student requires minimal verbal, visual, and physical assistance to demonstrate skills and concepts in this strand (76–100% independent).</td>
</tr>
</tbody>
</table>
How the overall strand score is determined from LOC, DSC, and IND scores

- Based on the “final 1/3 time frame” of the data chart, the scores in LOC, DSC, and IND are combined into a “strand score.”

This table is used to calculate a strand score.
(See *Educator’s Manual*, p. 49)

- Then, all strand scores are averaged to give an overall score in a content area.
A score of 100% accuracy and 100% independence isn’t required to earn a score of Progressing!

The table shows that scores above 51% accuracy and 51% independence earn a score of Progressing.

The Take-Away

- Students can attempt more complex entry points without risk of lowering their score.
- Push students to learn more challenging skills.
- Have students attempt new and different skills each year.
Which Students Should Take the MCAS-Alt?
Using the MCAS Decision-making Tool
Which Students Should Take MCAS-Alt?

A student with a significant cognitive disability who is:

• Working on learning standards that have been substantially modified due to the severity of the disability, and is

• Receiving intensive, individualized instruction in order to acquire, generalize, and demonstrate knowledge and skills, and is

• Unable to demonstrate knowledge and skills on a standardized paper or online test, even with accommodations,

. . . should take the MCAS-Alt in that subject.

(Teams decide annually in each content area)
MCAS-Alt and the “1% Threshold”

• Every Student Succeeds Act (ESSA) placed a **statewide cap of 1 percent of tested students** on who can take the MCAS-Alt (not counting Grade-Level or Competency portfolios).

• This is an opportunity to **revisit and refine decision-making** regarding who takes the MCAS-Alt.

• The standard test is the “default.” Teams should ask:

 o Can student take standard MCAS assessments, especially new **online** tests, with accessibility features and accommodations?

 o Would we get any meaningful information from the test results.

 o Can student submit a "grade-level" or "competency" portfolio instead?
Resources to Assist Districts in Reducing the Number of Students Taking the MCAS-Alt

Available at www.doe.mass.edu/mcas/alt/essa/:

- **Guidance** on which students should take the MCAS-Alt
- **Decision-making tool**
- **Sample Parent Notification Letter**, if student will take MCAS-Alt
 - Written notification of parents is now required.
- **Data** on percent taking MCAS-Alt in each district at elementary, middle, and secondary levels (2017-2019)
- **Training presentation** for IEP teams on meeting ESSA provisions.
 - Annual district training for teams is required.
Revisions include a list of criteria to take MCAS-Alt.
REVISIONS to Decision-making Tool

- Feedback from districts and others: the tool is useful for starting the MCAS conversation during IEP team meetings.
- Team chairs preferred that tool includes MCAS-Alt participation criteria.
 - Helps teams defend their recommendations and why MCAS-Alt was selected.
- Dotted line added to show who is ineligible to receive accommodations or take MCAS-Alt.
- Footnote added:

 “Students who take the MCAS-Alt in high school will not earn a Competency Determination in the assessed subject and therefore will not be eligible to earn a high school diploma.”
Questions to Consider for Students Currently Taking the MCAS-Alt

• The test, with or without accommodations, is the **default** decision.
 o Many more standards are assessed on the test than on MCAS-Alt.
 o Can the student demonstrate at least *some* knowledge and skills on standard MCAS?
 o Do test results provide any **meaningful information**?

• Could the student eventually achieve grade-level standards given appropriate instruction with support?

• Are IEP teams making **defensible** decisions (i.e., making the “least dangerous assumption” about each student)?
Important Dates to Remember

Fall Training Sessions:

♦ **October** 2, 3, 7, 8, 15, 16, 21, 22
♦ Administrator Overviews (1-3 p.m.):
 October 15, 16, 21, 22

“Portfolios in Progress” (half-day review sessions):

♦ **January** 7 (Taunton), 8 (Taunton), 9 (Springfield), 13 (Danvers), 14 (Marlboro)
♦ **February** 24 (Danvers), 25 (Springfield)
♦ **March** 3 (Taunton), 4 (Marlborough)

Other Important Dates:

♦ Schools order MCAS-Alt materials:
 January 6–17, 2020
♦ Binders and submission materials received in schools: last week in Feb.
♦ Preliminary results: posted mid-June
 MCAS-Alt Score Appeal deadline:
 5:00 p.m., June 26

Portfolios must be shipped by:
5 p.m., Friday, April 3, 2020

Massachusetts Department of Elementary and Secondary Education
Contact Information

MA Department of Elementary and Secondary Education – Student Assessment (781-338-3625)

- Dan Wiener, Administrator of Inclusive Assessment – dwiener@doe.mass.edu
- Debra Hand – dhand@doe.mass.edu
- Robert Pelychaty – rpelychaty@doe.mass.edu
- General Inquiries – mcas@doe.mass.edu
- MCAS Web Page – www.doe.mass.edu/mcas
- MCAS Service Center – 800-737-5103